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The use of piecewise quadratic polynomial approximations in the boundary integral 
equation method for the solution of boundary value problems involving Laplace’s equation 
and certain Poisson equations is described. To illustrate various features of this technique 
the results of several numerical experiments are presented. 

1. INTR~DUCTL~N 

Various numerical techniques have been proposed for the solution of elliptic 
boundary value problems, the most commonly used of these being finite-difference 
and linite-element Gale&in methods. A method of increasing popularity is the 
boundary integral equation (BIE) method. While the BIE method is of less general 
applicability than the finite-element Galerkin method it has proved to be more 
effective than this method for the solution of certain types of problems (see [3]). 

The BIE method is based on Green’s formula which enables one to reformulate 
certain elliptic boundary value problems as integral equations. Such an integraI 
equation involves the solution to the problem only on the boundary of the region and 
also its normal derivative there, and thus the reformulation has the effect of reducing 
the dimension of the problem. If, for example, the given problem involves Dirichlet- 
type boundary conditions, the BIE method enables one to determine an approximation 
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to the flux on the boundary, which may be exactly the information required from the 
problem. If an approximation to the value of the solution is then desired at an internal 
point of the region, this can be obtained by performing a simple integration which 
involves the specified boundary data and the boundary data obtained from the 
BIB method. 

In the “classical” BIE method (cf. [7, 10, 191) the boundary of the region is sub- 
divided into arcs whose endpoints include corners of the region and points at which 
the form of the boundary conditions changes. The solution to the problem and its 
normal derivative on the boundary are then chosen to be constants on each boundary 
arc. In this paper we shall describe the BIE method for the solution of boundary 
value problems for Laplace’s equation and for certain Poisson problems in the plane, 
devoting special attention to the case in which the approximations to the solution and 
the flux on the boundary of the region are generated from piecewise quadratic 
polynomial functions. The numerical results presented in Section 4 demonstrate that 
such approximations are of higher accuracy than those produced by the classical BIB 
method with a comparable number of boundary nodes. 

The BIB method can be used to solve more general problems in the plane 
than those described herein (see, for example, [3,6]). Also certain of the techniques 
described in this paper can be extended to three-dimensional problems (see, for 
example, [17]). 

Even in its simplest form, the BlE method gives rise to a system of linear algebraic 
equations which, unlike those arising in finite-difference m.ethods and finite-element 
Galerkin methods, is dense. However, by appropriately subdividing the region in 
which the boundary value problem is posed, sparseness can be introduced into the 
linear system arising from the BIE method applied to the subregions. This feature of 
the method, described in [7], will not be employed in the numerical experiments 
discussed in this paper. Nevertheless, in general, the number of nonzero elements in 
the coefficient matrix of the linear system arising from a finite-element Galerkin 
method is comparable to the number of matrix elements which have to be calculated 
in the BIB method with the same number of boundary nodes. Moreover, in the BIE 
method the elements involve only one-dimensional integrals, while those in the 
finite-element GaIerkin method involve two-dimensional integrals. The BIE method 
is easy to program even for problems involving regions with curved boundaries, and 
is particularly effective when the solution on the boundary only or the flux on the 
boundary is required, or when the solution at a few interior points is desired. If an 
approximation is required throughout the interior of the region, the use of the BIB 
method is not usually recommended. 

An outline of the remainder of the paper is as follows. In Section 2 the integral 
equation formulations of boundary value problems involving Laplace’s equation and 
certain Poisson equations are described and the classical BIB method reviewed. 
The improved BIE method is presented in Section 3, and in Section 4 this method i.s 
used to obtain numerical solutions to problems chosen from the literature and some 
comparisons with the classical BIE method are made. In the Appendix the application 
of the BIE method to biharmonic problems is sketched. 
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2. THE BIE FORMULATION 

Suppose 8 is a bounded domain in the plane with piecewise smooth boundary X?. 
For any sufficiently smooth function ZI defined on J?, the closure of J2, it is well known 
from Green’s third identity [2, pp. 256-2571, that, for P E 4 

f [ u(Q) $ log 4’, Q, - 
-m a 

F 1% r(P, Q)] ds(Q) 

(2.1) 

where Q E aA?, q E J& V2 denotes the Laplace operator at the point q, nQ denotes the 
outward normal to a;2 at Q, r(P, Q) (resp. r(P, q)) denotes the distance between the 
points P and Q (resp. P and q), and 

Since 

$ log r(~, Q> = $ (pv Qh (2.2) 

where 

it follows that 

and if P E aJ2 and &’ has a unique tangent at P, then c(P) = T. 
Now suppose that 

v%(P) = 0, P’E 9. 

Then from (2.1) we have 

c(P) u(P) = s,, {4Q, & log r(P, Q) - T log 4’, Q,/ WQ). (2.3) 

If 11 is prescribed on ?X& that is, we have a Dirichlet problem, then (2.3) with P E aJ2 
becomes a Fredholm integral equation of the tist kind for the unknown boundary 
flux au/&z0 . In many Dirichlet problems, this boundary flux is the desired information. 
However, if the value of the solution u is required at a point P EL?, this can be 
obtained from (2.3) using the calculated value of the boundary flux and the prescribed 
values of II on &C?. It should be noted that, while the solution u of the Dirichlet problem 
may be unique, there are exceptional cases in which the corresponding Fredholm 
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integral equation of the first kind does not have a unique solution a:@rzo . This 
phenomenon is discussed, for example, in [l], where it is &own that in such excep- 
tional cases a supplementary condition must be imposed on t!?~/&z~ in order to obtain 
a unique solution to the integral equation. This condition, which takes the form 

must be satisfied in general by harmonic functions since, using Gauss’ theorem, 

The use of the classical ME method incorporating condition (2.4) for the solution of 
Laplace’s equation in exceptional cases is also discussed in Cl]. Condition (2.4) in a 
suitably discretized form can be easily incorporated into the improved BIE method. 

If we have a Neumann problem and au/an, is prescribed on the boundary so that 

(a necessary condition for the existence of a solution ti, not to be confused with 
condition (2.4) in which au/&z, is zrnkplotr~~), then (2.3) with P E Z2 yields a Fredholm 
integral equation of the second kind for the (nonunique) values of Al on aQ. To obtain 
a unique solution an additional restriction must be imposed on u such as its value aa 
some point of a2 or 

1 u(Q) d(Q) == 0. 
asi 

(2.6) 

Having solved this integral equation, the values of u at any point in fz can again be 
determined from (2.3). 

Other types of boundary conditions are also easily handled. In the case of boundary 
conditions of the form 

where CX, fi, and g are given functions, we substitute for au/an in (2.3) and, for 9 E S8, 
again obtain a Fredholm integral equation of the second kind for zi on SQ When 
mixed boundary conditions are prescribed, the given data are inserted into (2.3) with 
P E X?, yielding an integral equation for the unknown boundary data. Note that 
when Neumann data are prescribed on only part of the boundary, restriction (2.4) 
is no longer required. 

If the equation under consideration is Poisson’s equation 

vu =f in Q, :2,q 
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then (2.1) contains an integral over J& namely, 

IfJ’is harmonic in Q this term can be reformulated as an integral over LX!. In fact it is 
easy to show, using Green’s second identity [2, p. 2521, that, for P E 4 

=- 4 aR f@) $ G(P, P) - p W'> Q)] 4Qh s [ Q (2.9) 

where G(P, Q) = [r(P, Q)12[log r(P, Q) - I]. Thus, for P E aa, (2.1) can be written 
in the form 

c(P) u(P) - j-, ]u(Q, & log W’, Q> - F log W’, Qj n’s(Q) 

1 =- 
4 s [ aR f(Q) $ G(P, Q> - p GO’, Q)] WQ) 

Q 
(2.10) 

= F(P), 

in which all the integrals are integrals on the boundary of 9. 
In general it is, of course, impossible to solve the boundary integral equations 

exactly, and hence one must resort to a numerical technique. In the classical BIE 

method ([7, 10, 191) the boundary 252 is subdivided into arcs L%& = ijdlkj, 
j = I,..., M, where PM = P,, . On each arc X?, , u and au[&z are chosen to be con- 
stants, uj and U,,j , say, respectively. Then, for example, (2.3) becomes 

(2.11) 

where P E a!S, . If we collocate Eq. (2.11) at the midpoints pi of the arcs aQi , 
i = I,..., M, we obtain the system of linear algebraic equations 

AU= BU,, (2.12) 

where 

and 

u = (Ul ,...) z&f)= 



AN IMPROVED BIE METHOD 101 

Ah A = (C&J and B = (&) where 

with & denoting the Kronecker delta, and 

In the case of Dirichlet boundary conditions, one would choose for uj the value u(pJ 
and solve (2.12) for U, . When Neumann boundary conditions are prescribed, set 
u,~ = (3U/&)(Pj) and replace (2.6) by an appropriate approximation, for example, 

(2.13) 

and then determine the least-squares solution of the M + 1 equations (2.12) and (2.13). 
In other types of boundary conditions u and au/&z are approximated by their values 
at the midpoints of the arcs on which they are specihed. The approximations to these 
functions on the remaining segments are determined from (2.12). 

lf a52 is curved, it may be desirable to approximate LX& by the segments Pj-lPj and 
q , and integrate over these segments exactly [20] or use an appropriate quadrature 
formula. An alternate procedure is to replace aQj by the segment .Pj-lPj , evaluate 
the given data at the midpoint of this segment, and perform all integrations over this 
segment. 

3. PIECEWISE POLYNOMIAL APPROXMA-KIONS IN THE BIE. ME'I;FIOD 

The numerical procedure outlined in Section 2 has proved to be quite effective in 
practice (see [15,16] for example). However, more accurate approximations to the 
solutions of the boundary integral equations can be obtained using isoparametric-type 
techniques similar to those used in the finite-eiement GaIerkin method (cf. [22& 
In this approach, on each arc ?XJ of the boundary X?, u and &/an and possibly 3Pj 
itself are approximated using polynomials. We shah describe in detail the case in 
which quadratics are employed. 

in the following we shall denote by Pl,j and P,,j the end points of a;2, , and by P,,j its 
midpoint. Note that Ps,h. = P,,,,, , k = l,... 9 M - 1, and P,,,tl = Pl,l. For -1 < 
5 < I, let 

Ml@ = -tE + SE”, 
A&([) = 1 - J?, 
M,(f) = g + 952, (3.1) 
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and consider the transformation defined by 

where (xii, JI& are the Cartesian coordinates of the point Pivj . This transformation 
maps the points Pi,j , i = 1,2,3 onto the points -1, 0, 1, respectively, on the &axis. 
If Q = (x, 7) E X$, then we approximate u(Q) by 

and au(Q)/EJn, by 

If u (resp. &&%z) is prescribed on &$ then ii(P,,J (resp. E,(P&) is taken to be u(P,J 
(resp. (&@z)(Pi,J). 0 n substituting these approximations into (2.3) and collocating 
the resulting equation at each of the boundary nodes Pl,j and P2,j (j = l,..., M), we 
obtain the system of linear algebraic equations 

(3.3) 

where P E B = (Plek , 1 = 1,2; k = l,..., M). When as2 is curved, the integrals over 
the arcs X&, j = l,..., M, may be complicated, in which case the transformation (3.2) 
is used to approximate the integrals over %.I~ by integrals over [-I, 11, and (3.3) 
becomes, after the use of (2.2) and a little rearranging, 

where P E 8, 

(3.5) 
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and 

where 

(3x3) 

J&g = [(Ag)” + ($$1”” 

If 0 denotes the 2M-vector with components 

GN-* = ~(P,,,), N = l,..., kf, 

&A’ = ii(P&, N = I,..., M, 

and on. is defined similarly in terms of zZ,(P,,,) and z&JP~,,~), then (3.4) can be written 
in the matrix form 

At7 = BlJ71 ) (3.7) 

where A = (Z,,,) and B = (i,,J with 

and 

where nz = 2k + I - 2, 1 = I, 2, and k = I,..., M. In (3.Sj and (3.9) we have used 
the fact that P3,k--1 = Pl,t and P,,, = P,,nf . 

In the construction of the matrices A and B we have assumed that both u and au/&z 
are continuous on the boundary ZC?. The right-hand side of (3.7) can be easily modified 
to take into account jump discontinuities in au/&z which may occur at the nodes PI.,. f 
j = I,..., M. In problems involving boundary singularities or discontinuous Dirichlet 
boundary conditions, the use of the improved PIE method as described would be 
inadvisable, since it is clearly inappropriate to approximate azrjan by a polynomial 
near a point at which u has singular behavior. Papamichael and Symm [14] have 
described several ways in which the classical PIE method can be modified to treat 
such problems. Similar modifications can be devised for the improved PIE method 
but will not be discussed herein. 

The potential advantages of the use of piecewise polynomial approximations in the 
BIE method will be lost if the integrals in (3.8) and (3.9) are not carefully treated. 
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Consider first (3.8). If P = Pl,x, I’= 1 or 2, 1 < k d M, then o~~,~(P~,J, olj(Pz,J, and 
/3&l,k) have well-behaved integrands when P $ a!&, and these integrals can be 
approximated using an appropriate Gaussian quadrature formula. (In practice a 
four-point formula is used.) When P E 8-nj , 

The integrand in this case has a removable singularity at the point &Pl,J. Gaussian 
quadrature can again be used to approximate this integral. Thus the elements of the 
matrix A” can be formed by evaluating the integrals in (3.8) individually except when 
P E LX$ . In that case certain of these integrals must be grouped as indicated in (3.10). 
Such groupings are necessary only in the computation of the diagonal elements of A, 
one being required in &;?N,2V , and two in a”,,-,,,,_, since P,,,-, = PI,N (P3,,, = P3,,+J 
and we compute ~3,N-l(Pl,N) - ~lv-l(pl,~) and ~l,NU’l,~) - dPl.d. 

Consider now the evaluation of p,,j(P) when P = Pl,j, I = 1, 2, or 3. If 1 = 1, 
then 

+ J:l n/r,(O log[(l + ~~/21 Jj(O hf. 

The first integral has a removable singularity at 5 = -1 and can be evaluated using 
Gaussian quadrature. The transformation 

5 = a1 + 0 
transforms the second into 

2 s’ h&(25 - 1) log 5J,(21 - 1) dS 
0 

which can be evaluated using a weighted Gaussian quadrature formula with weight 
log 5 (see [12] or [21]). If 2 = 3, the procedure is similar but with *(I - 0 replacing 
+(I + 0. When I = 2, 
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The first two integrals have removable singularities at f = 0 and can be approximated 
using a Gaussian quadrature formula. A log &weighted Gaussian formula can be used 
to evaluate the remaining integrals. 

If we have a Poisson problem leading to (2.9), then F(P) of (2.10) is evaluated by 
approximatingfand Z~f/i?n on a&$, j = I,..., M, by 

and then transforming the integrals over aQj to integrals over f-1, I], The latter are 
well behaved and can be evaluated using an appropriate Gaussian quadrature 
formula. 

4. NUMERICAL RESULTS 

In this section we present numerical results which illustrate the performance of the 
improved BIE method (IBIEM) defined by (3.3) on three test problems chosen from 
the literature. The first two problems involve Laplace’s equation, one with Dirichlet 
boundary conditions, the other having mixed boundary conditions. The third problem 
involves Poisson’s equation subject to Dirichlet boundary conditions. In two of the 
problems the regions have curved boundaries. The test problems cover most of rbe 
cases described in this paper and help demonstrate the versatility as *well as the 
accuracy of the IBIEM. 

The systems of linear algebraic equations (3.7) arising in the IBIEM were solved 
using the routine MA21A from the Harwell Subroutine Library, and all computations 
were performed en the IBM 370-165 at the University of Kentucky’s Computer 
Center. 

PROBLEM 1. Consider the Dirichlet problem 

where 

x%(x, y) = 0, I& .Y> E J-4 

u(x, y) = -x3 - 3xzy + 3x3,” + y”, GG Y) E a‘Q, 

8 = ((x, y): x” + y” < 2, x 3 0, y >, O}. 

the analytical solution of which is 

u(x, y) = -x3 - 3Xzy + 3x):” + y3. 
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This problem was solved in [5] using finite differences and the method of successive 
overrelaxation, and in [14] using the classical BIE method (2.11) (denoted in the 
following by CBIEM) and modifications of it. 

Approximations to u at certain points of L? were generated from the IBIEM with 
M = 14, 28, 58, where M denotes the number of boundary nodes. The number of 
segments &? on each part of the boundary is given in Table I. In this and following 
problems, unless otherwise stated, the segments on each portion of the boundary 
are of equal length. In Table II we have presented the errors (analytical solution minus 
numerical solution) in approximations to tl at the points of L? indicated in Fig. 1. For 
comparison we have given in Table II the results obtained using the CBIEM with 
M = 29 and the same segment distribution as for the 1BIE.M with A4 = 58. Also 
quoted are results given in [14] for the CBLEM with M = 84, 24 equal segments on 
each straight edge and 36 on the curved boundary. 

TABLE I 

Distribution of Segments (Problem 1) 

37 

\ 
M y=o x=0 x2 + y2 = 1 

14 2 2 3 
28 4 4 6 
58 8 8 13 

TABLE II 

Errors x IO* in BIEM Solutions (Problem 1) 

IBIEM CBIEM 
Analytical 

Point solution M= 14 M = 28 M= 58 M = 29 M 2 84 

1 0.0000 0 0 0 0 0 
2 0.0440 -10 0 0 -3 0 
3 0.1840 -4 -4 0 -5 --1 
4 0.4680 34 0 0 -1 0 
5 0.9440 112 12 0 20 1 
6 0.0000 0 0 0 0 0 
7 0.1880 5 0 0 3 0 
8 0.5680 10 2 0 16 1 
9 1.1880 -s13 5 -4 22 3 

10 0.0000 0 0 0 0 0 
11 0.4280 79 2 1 17 1 
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x=0.1 (0.210.5 
y=0.1(0.2)0.9 

FIG. 1. Region of Problem 1. 

PROBLEM 2. This problem was taken from [I 11, where it was used as a test problem 
for the method of lines. In this problem 

~~{(~,yj:O~~d~,O~yy~b) 
and 

with 

24(x, b) = sin 7rx, 

‘The analytical solution is 

NX,Yj = 
cash ry sin ?rx 

cash rrb ’ 

and, as in [ll], we chose 6 = 0.475. Approximations to &j&r on the lines x’ = 0 and 
y = b and to u on the lines y = 0 and x = 4 were calculated using the IBIEM with 
M = 8, 16, and 32, and 1,2, and 4 segments per side, respectively. The errors in these 
approximations at the boundary points indicated in Fig. 2 are given in Table III. 
For comparison purposes, the values obtained from the CBIEM with M = 16 
(4 equal segments per side) are also stated. 

In this and the following example approximations at boundary points which are 
not nodes are simply obtained from the assumed form of the approximations on the 
boundary. 
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0.0625 0.1875 0.3125 0.4375 0.5000 x 

FIG. 2. Region of Problem 2. 

TABLE III 

Errors x lo1 in BIEM SoIutions (Problem 2) 

Point 
Analytical 

solution 

IBIEM CBIEM 

M=8 M= 16 M = 32 M= 16 

1 0.0835 -82 -15 -1 49 
2 0.2378 -45 15 0 30 
3 0.3559 70 -5 0 16 
4 0.4199 83 8 1 6 
5 0.4356 93 8 1 22 
6 0.4969 94 -3 1 5 
7 0.6282 -27 24 1 -13 
8 0.8479 -85 -17 2 -28 
9 2.7846 77 47 24 -1536 

10 2.3607 344 -13 9 167 
11 1.5774 -240 100 8 -239 
12 0.5539 -485 -82 24 -731 
13 -2.6637 -285 36 -18 3661 
14 -1.9734 318 -37 -9 -672 
15 -1.5610 -10 15 -6 -431 
16 -1.3683 -115 -17 -3 590 

PROBLEM 3. This problem, which involves Poisson’s equation, was used in [23] 
as a test probIem for various finite-element Gale&in methods, It takes the form 

C%(x,y) = - y xy, 6, Y) E fin, 

4x, Y) = 0, CG Y) E 8Q 
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and its analytical solution is 

u(x, y) = xy(1 - $x2 - y”). 

Approximations to &/an were obtained using the IBIEM based on i.2.10) with 
M = 12, 20, and 38, the distribution of segments on each portion of the boundary 
being given in Table IV. In this problem the segments on the curved portion of the 
boundary were not of equal length. The errors in the approximations to au/an at the 
points on 8Q indicated in Fig. 3 are given in Table V. 

TABLE IV 

Distribution of Segments (Problem 3) 

TGi 

\ M y=o x=0 $2 + yz = 1 

12 2 1 3 
20 3 2 5 
38 6 4 40 

TABLE V 

Errors x 10’ in BIEM Solutions (Problem 3) 

Point 
Analytical - 
solution M= 12 

IBIEM 

M = 20 M = 38 

1 -0.2431 40 5 0 
2 -0.5625 -1 -3 -1 
3 -0.3819 -31 1 0 

4 -0.5027 1 --13 -1 
5 -1.2242 2.51 -18 9 
6 -1.2493 189 -7 -6 
7 -0.8941 1.5 1 2 
8 -0.3218 147 13 -1 
9 -0.3281 -213 -2 1 

10 -0.2348 403 -1 -4 
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(0.162,0.994) 

3-flb9::;,0.*4,) 

0.25 

0 

@jQ Q p~MWI.2~~ 

0.25 0.75 1.25 1.50 ,! 

FIG. 3. Region of Problem 3. 

APPENDIX. THE BIE METHOD FOR THE TWO-DIMENSIONAL BIHAR~~oNIC EQUATION 

The techniques described in this paper can also be used to solve boundary value 
problems for the two-dimensional biharmonic equation. 

VJZl(P) = 0, PEL?, (Ala) 

where Q is a bounded domain in the plane with boundary Z?. Of particular interest 
are Dirichlet boundary conditions of the form 

zc(p> = f(P), 
au(p) 
7 = g(P), hasz. 

P 

Under sufficient smoothness assumptions on f and g there exists a unique solution of 
(Al). By introducing D = V%, (Al) can be written as the coupled system 

v%(P) = o(P), PE$ (A24 

V%(P) = 0, PEQ, @2b) 

zm = f(P), 
au(p) 
7 == g(P), PEai C4W 

To solve (A2) we first express it as a system of coupled integral equations on &? 
Since u is harmonic, it follows from (2. IO) that 

1 
3 aca s [ 4Q) $ GO’, Q> - 

Q 
F W’, Q)] 4Q) 

= 4’) u(P) - s,, [u(Q) & log IV, Q> 

- & u(Q) log r(P, Q,] WQ), PEais, 043) 
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and from (2.3) that 

1. I .k 

- F log r(P, Q)] h(Q) = 0, PEa2. 

Since u satisfies the boundary conditions (A2c) the right-hand side of (A3) is knowr~, 
and Eqs. (A3) and (A4) form a coupled pair of integral equations fol the functions c 
and PC/& on a&?. Approximations to these functions can be determined using quadratic 
functions as described in this paper. Since these approximations must be calculated 
simultaneously one must solve a system of equations of twice the order of that 
occurring in the solution of Laplace’s equation using the same number of boundary 
nodes. 

Once approximations to U(P) and %(P)/&+ , P E &G’, have been determined, ar, 
approximation to u(P), P E 8, can be calculated from (-43) with P E Q. 

Finite-difference methods for the solution of (A2) are discussed in [4], for example? 
for the case in which Q is a rectangle. One difficulty encountered in such methods is 
that since 2’ (=VQ) is unknown on ZZ, special methods for approximating v on D 
must be devised. Note that in the BIE formulation of (AZ) the fact that boundary 
values for v are not prescribed gives rise to no new difficulties. 

When boundary conditions such as 

Zf = f(P), V22r(P) = g(P), PEaQ 

(Or 

zi == f(P), fn V2Zf(P) = g(P), PE2Q) 

are prescribed then the problem is much simpler since (A2aj and (A2b3, and hence 
the integral equations (A3) and (A4) are weakly coupled. One can determine au 
approximation to &(P),/&, , P E iX2 (or z>(P), P E ?Q) using (A4) and then using (h3) 
an approximation to zr(P), P E 552. Classical BIE methods for approximating solutions 
to such problems are discussed in [X, 9, 13, 1X]. 
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